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Abstract: Measurements of the diffusive transport of ultrasonic waves have been
performed to critically test the applicability of the diffusion approximation for
multiply scattered sound.  By performing these measurements over an
extended range of frequencies, we have shown that the energy velocity of
diffusing ultrasound is similar in magnitude and frequency dependence to the
group velocity, giving a unified physical picture of the velocities of energy
transport by both diffusive and ballistic wave pulses.  This information on
diffusive transport of ultrasound has facilitated the development of a new
ultrasonic technique, Diffusing Acoustic Wave Spectroscopy (DAWS), for
probing the dynamics of structured media.  The feasibility and sensitivity of
DAWS has been demonstrated by studying the motion of particles in fluidised
suspensions, providing important new information on the velocity fluctuations
and local strain rate of fluidised particles.
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1. INTRODUCTION

Over the last two decades, there has been a considerable resurgence of
interest in the propagation of classical waves through inhomogeneous
materials that scatter the waves very strongly [1, 2].  Most of the
experimental activity has focused, however, on light and microwaves, and it
is only during the last few years that successful measurements of multiply
scattered ultrasound have been performed.  These ultrasonic experiments
have lead to new insights into the nature of the diffusive propagation of
classical waves, a simple approximation that has been extensively used to
interpret a wide range of wave phenomena in strongly scattering media.  In
this paper, we will first review this recent progress in investigating the
diffusive transport of ultrasonic waves, and then describe a new ultrasonic
technique, Diffusing Acoustic Wave Spectroscopy, that takes advantage of
this knowledge to probe the dynamics of the scattering particles themselves.

2. DIFFUSIVE TRANSPORT OF ACOUSTIC WAVES

To study the diffusive transport of ultrasonic waves, we have focussed
mostly on a simple realisation of random strongly scattering materials
consisting of randomly close packed solid glass spheres immersed in a fluid.
In the intermediate frequency regime, where the ultrasonic wavelength is
comparable with the size of the scatterers, the propagation is dominated by
very strong multiple scattering due to the large solid-fluid impedance
mismatch.  In this regime, we have shown [3] that the transport of energy by
the scattered waves is well described using the diffusion approximation, in
which all phase information is neglected and the propagation is modelled as
a random walk process.  Within this approximation, the dynamic transport is
described in terms of the wave diffusion coefficient D = vel*/3, where ve is
the energy velocity, which corresponds to the average local velocity of
energy transport in the diffusion process, and l* is the transport mean free
path, or the distance the waves must propagate until their direction is
randomised.  To critically test the validity of the diffusion approximation for
multiply scattered ultrasound, we have performed a series of transmission
measurements over an extended range of frequencies f and sample
thicknesses L using both pulsed and quasi-continuous-wave techniques [3,
4].  These measurements were performed in a water tank by placing slab-
shaped samples containing the random scatterers between a plane wave
generating transducer and a miniature hydrophone detector, which was small
enough to measure the transmitted pressure field in a single (near-field)
coherence area, or speckle.  The transmitted diffusive flux was then
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measured by ensemble averaging the intensity over many independent
speckles.  By fitting the predictions of the diffusion model to our data, we
measured the diffusion coefficient in the pulsed experiments and the
transport mean free path in the cw experiments.  Results for the frequency
dependence of D and l* are shown in Figs. 1(a) and (b), where we plot D/a
and l*/a as a function of the normalised frequency kwa, where kw = 2πf/vw is
the ultrasonic wave vector in water, f is the frequency, and vw is the sound
velocity in water.  We find that the diffusion coefficient D shows a
pronounced variation with frequency in the strong scattering regime where
kwa > 2, while the transport mean free path l* does not.  In Fig. 1(b), the
transport mean free path (solid symbols) is compared with the scattering
mean free path ls (open symbols), measured independently from the
attenuation of the ballistic pulse intensity, Iballistic = I0 exp[-L/ls], that travels
though the sample without being scattering out of the forward direction.  At
the low end of the intermediate frequency regime, kwa ≤  4, we find l* ∼  ls,
indicating that even though the scattering is very strong, it is nearly isotropic
on average.  At higher frequencies, however, ls becomes even shorter while
l* remains roughly equal to the diameter of the scatterers.

Since we have measured both D and l*, we can also use these data to
determine the energy velocity from the ratio ve = 3D/l* (solid symbols in
Fig. 1(c)).  Like D, ve exhibits a strong frequency dependence, reflecting a
substantial slowing down of wave propagation over much of this frequency
range due to scattering in the medium.  Insight into this behaviour is
obtained by comparing the energy velocity with the group velocity vg [4-6],
shown by the open symbols in Fig. 1(c).  As seen in this figure, we find
experimentally that ve and vg are remarkably similar in magnitude and
frequency dependence, a result that was not expected from earlier theoretical
work for light [7-9].  These data suggest a simple physical picture for ve
based on our observation in acoustics that a close connection must exist
between ve and vg, the velocities which describe the transport of energy by
diffusive and ballistic waves respectively.  Even in the forward direction, the
transport of energy by wave pulses is strongly affected by the scattering,
which leads to a large scattering delay at frequencies near the minima of vg.
It is reasonable to expect that wave pulses scattered through a non-zero
scattering angle will experience a similar, but not identical, scattering delay,
so that in this picture of energy transport by wave pulses, ve and vg should
exhibit similar behaviour.  Thus ve should be simply related to vg by the
additional angle-averaged scattering delay of the scattered waves.
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Figure 1. Frequency dependence of (a) the diffusion coefficient, (b) the transport and
scattering mean free paths, and (c) the energy and group velocities of ultrasonic waves
propagating through a randomly close packed suspension of glass spheres in water.

We are able to explain these results quantitatively using a new effective
medium model, which is based on a spectral function approach [10-12].
This approach gives a simple criterion for determining the dispersion
relation of the medium that is not only physically plausible but can be shown
on general grounds to be very accurate so long as the mean free path is not
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so short that kls < 2.  Even though this model was developed initially to
describe only the coherent ballistic component, its success in describing the
behaviour of the group velocity [5] has formed a basis for extending the
model to determine the energy velocity of diffusive acoustic waves [4]; this
has been accomplished by explicitly accounting for the additional scattering
delay experienced by the scattered wave pulse.  In this model, the basic
scattering unit is taken as a coated elastic sphere embedded in an effective
medium, whose properties are determined by identifying the frequencies and
wave vectors of the coherent propagating modes from the peaks in the
spectral function.  The complex scattering amplitude for the coated elastic
sphere is then used to determine the angular dependence of the phase shift
relative to the forward direction for each frequency component of a wave
pulse, allowing the additional scattering delay of the wave pulse to be
calculated as a function of scattering angle.  The intensity-weighted angular
average of this additional scattering delay, ∆tave, allows the energy velocity
to be calculated from the group velocity as ve = vg/(1+δm), where δm =
∆tavevg/l*.  The predictions of this model for the velocities and mean free
paths of diffusive and ballistic propagation are shown by the solid and
dashed curves respectively in Fig. 1.  Excellent quantitative agreement is
seen not only for these quantities but also for the diffusion coefficient, D =
vel*/3.  Thus accurate calculations of D can be obtained from a single
Green’s function approach to determine ve and l*, rather than having to
evaluate the configurational average of the product of two Green’s functions,
as is normally done to determine the properties of the diffuse intensity.

Furthermore, we are able to identify the mechanisms responsible for the
remarkably slow velocities by calculating the ultrasonic energy density, both
inside the scatterers and in the surrounding fluid [6].  We have demonstrated
that there are important contributions both from resonant scattering by the
glass spheres, where energy is trapped within the solid scatterers, and from
tortuosity effects, where the wave energy is largely confined to the tortuous
fluid pathways.  Thus we are able to obtain a microscopic physical picture of
energy transport by diffusive acoustic waves in these strongly scattering
media - an important step in facilitating both the search for acoustic wave
localisation in more strongly scattering samples and the development of a
novel probes of multiply scattering materials.

3. DIFFUSING ACOUSTIC WAVE SPECTROSCOPY

In the presence of strong multiple scattering, traditional ultrasonic
imaging techniques break down, motivating the use of other approaches to
learn about the structure and dynamics of strongly scattering materials.  We
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have exploited our understanding of the diffusive transport of ultrasound in
slurries to develop a new technique for probing the dynamics of moving
scatterers.  This technique, which we call Diffusing Acoustic Wave
Spectroscopy (DAWS) by analogy with Diffusing Wave Spectroscopy using
light [13, 14], determines the relative motion of the scattering particles from
the temporal fluctuations of the scattered ultrasonic waves.  To demonstrate
the feasibility and excellent sensitivity of DAWS, we have used this
technique to study the dynamics of fluidised suspensions of glass beads in
water-glycerol mixtures, where the particles are supported by flowing the
fluid upward to counteract gravity-induced sedimentation.  Even though the
average velocity of the particles is zero, they are far from stationary, and
understanding their dynamics remains a challenging and interesting problem
because of the complexity of the many-body hydrodynamic interactions that
are involved.

Since pulsed techniques are often relatively easy to implement in
ultrasonics, we describe pulsed DAWS here, although we have also
performed continuous wave DAWS in situations where a narrow frequency
bandwidth was important for a quantitative interpretation of the data.  Fig.
2(a) shows the transmitted ultrasonic field in a single speckle when the input
pulse, shown on the left, is incident on the suspension.  The central
frequency in the pulse was 2.35 MHz, at which frequency the transport mean
free path l* = 1.0 mm for a volume fraction of glass beads equal to 40%.
This value of the mean free path corresponds very closely to the average
centre-to-centre distance between the particles, an example of how very
strong the scattering is in these experiments.  On subsequent repetitions of
the input pulse, the measured field profile undergoes fluctuations due to the
motion of the scattering particles, as illustrated by the thin dotted line in Fig.
2(a), which shows the field at a later time.  The simplest way to record these
field fluctuations is to use a boxcar to measure the field at a fixed sampling
time ts after the incident pulse starts to diffuse through the suspension, and to
digitise the boxcar output on a digital oscilloscope.  To measure the true
field at this sampling time, the gate on the boxcar is set at a very short time
interval, typically about 1/20th of the ultrasonic period.  Thus we are able to
measure the fluctuations of the multiply scattered fields at a fixed path
length of diffusing sound s = ve ts though the sample.  A short segment of
these field fluctuations, measured at a sampling time ts = 27.8 µs in the
diffusion profile, is illustrated in Fig. 2(b), where the time interval between
data points is set by the pulse repetition rate, typically 1 kHz in our
experiments.  The full temporal record of the field fluctuations F(t) generally
extended to approximately 130,000 points or pulse repetitions, and was
repeated 50 times to further improve the statistics.
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Figure 2. (a) Transmitted ultrasonic field in a single speckle (solid curve) compared with the
transmitted field at a later time (thin dotted curve).  The input pulse is shown on the left.
(b) Field fluctuations at the sampling time ts = 27.8 µs in the diffusion profile.

Figure 3. (a) Temporal auto-correlation function of the field fluctuations.  (b) Mean square
relative displacement of the particles as a function of time.
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To investigate the motion of the particles, we first determine the temporal
auto-correlation function g1(τ) of the measured field fluctuations,

( )
( ) ( )

( )

*

1 2

F t F t dt
g

F t dt

τ
τ

+
= , (1)

using a Fourier transform technique.  Typical results for the field correlation
function are shown in Fig. 3(a), where g1(τ) is calculated from the field
fluctuations illustrated in Fig. 2(b).  The decay of g1(τ) is determined by the
total phase change of diffusing sound for n = s/l* sequential scatterings from
the moving particles, where n ≈ 50 for the data shown in Fig. 3(a).  This
phase change can be written as
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where kp is the wave vector of the wave scattered from the pth to the (p+1)th

particle, and ∆rrel,p(τ) = ∆rp+1(τ) − ∆rp(τ) is their relative displacement during
the time interval τ.  By calculating the ensemble-averaged contributions of
the phase changes from all paths containing n scattering events, the pulsed
DAWS correlation function can be written
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where ∆rrel
2(τ)  is the mean square displacement of the particles relative to

their neighbours a distance l* away [15].  The second line of Eq. (3) is
strictly valid only when there is no correlation between the magnitude of the
component of ∆rrel,p(τ) along kp and the angle between these two vectors, but
is expected to be a good approximation for the non-uniform motion typical
of the fluidised suspensions investigate here.  For correlated motion, only a
fraction of the full �∆rrel

2(τ)  is measured in DAWS, one extreme example
being the case of pure rotations, which give no contribution to the decay of
g1(τ), since DAWS is sensitive only to the component of ∆rrel(τ) parallel to
the scattering wave vector between adjacent scattering events.  In general,
the measured �∆rrel

2(τ)  can be written in terms of the strain tensor εij(τ) =
½(∂iuj(τ)+ ∂jui(τ)) as [16, 17]
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Here u(τ) = ∆r(τ), and ε  is the average strain.

We use the methods outlined in section 2 to measure ve, l* and k from
separate diffusive and ballistic ultrasound propagation experiments [3-6],
enabling us to determine �∆rrel

2(τ)  and  ε(τ) by inverting Eq. (3) for g1(τ).
Typical results are shown in Fig. 3(b).  This figure shows that the particles
initially move in ballistic trajectories, �∆rrel

2(τ)  = �∆Vrel
2 τ2, whose

magnitude is given by the variance in the relative velocity of the particles
�∆Vrel

2 .  Since l* is essentially equal to the inter-particle separation at the
frequency at which these measurements were made, DAWS can actually
probe the relative motion of adjacent beads in the suspension, giving
information on very short length scale motions that are difficult to obtain
with other techniques.  At later times, �∆rrel

2(τ)  crosses over to a weaker
time dependence as the particle trajectories become altered by the interaction
with neighbouring particles; this behaviour is well described by the
empirical relation, �∆rrel

2(τ)  = �∆Vrel
2 τ2 / [1 + (τ/τ∆)2], shown by the solid

curve in Fig. 3(b), allowing us to measure both ∆Vrel = [�∆Vrel
2 ]1/2 and the

local fluctuation crossover time τ∆.  Results for ∆Vrel and τ∆ over a range of
volume fractions between 0.18 and 0.5 are shown in Fig. 4; the system
studied in this case is a suspension of 0.438-radius beads at a particle
Reynolds number of 0.3.  In Fig. 4, ∆Vrel is normalised by the Stokes
velocity V0, which corresponds to the sedimentation velocity of a single
isolated particle in the fluid.  The appreciable decrease in ∆Vrel with volume
fraction φ reflects the comparable decrease in the average fluid flow speed,
Vflow, required to counteract the sedimentation of the beads and keep them
suspended.  We find that the magnitude of the relative velocity fluctuations
is remarkably large throughout this range of volume fractions, with ∆Vrel ∼
Vflow at the length scale l* at which the fluctuations are measured.  From
these fluctuations in the relative particle velocities, we can also determine
the average local strain rate Γ  =  ε/τ ≈ ∆Vrel /l*, the first time that Γ  has
been probed on length scales of order the inter-particle separation in
fluidised suspensions.  Our results for Γ  are shown in Fig. 5.  Also shown is
the average strain evaluated at the fluctuation crossover time τ∆, indicating
that there are very substantial local rearrangements of the beads on the short
time scales over which the beads move ballistically before interacting with
their neighbours.
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Figure 4. Volume fraction dependence of (a) the relative velocity fluctuations ∆Vrel
normalised by the Stokes velocity, and (b) the local fluctuation crossover time τ∆.

Figure 5. (a) The average strain rate Γ  at the length scale l*, which is comparable to the
inter-particle spacing.  (b) The average local strain  ε at the crossover time τ∆.
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To investigate the motion of the particles on longer length scales, we can
lower the ultrasonic frequency so that kwa becomes less than 2, allowing the
experiments to be repeated at larger values of l* (c.f. Fig. 1).  We find that
the relative velocity fluctuations increase markedly with length scale, with
the increase being well described by ∆Vrel ∝  √l*, demonstrating that the
velocity fluctuations are strongly correlated spatially at short length scales
and early times [15].  Moreover, by combining DAWS with a novel
implementation of Dynamic Sound Scattering (DSS) in the single scattering
limit, we are able to estimate both the instantaneous and dynamic correlation
lengths of the velocity fluctuations.  Comparable large scale structures in the
flow patterns of sedimenting suspensions have only recently be discovered
[18], and only in the limit of creeping flow at very low particle Reynolds
numbers, Re ∼  10−4.  Our new results demonstrate the power of these
ultrasonic techniques to probe the dynamics of fluidised suspensions over a
range of particle Reynolds numbers that are not accessible to light scattering
methods because of the large particle sizes and length scales involved.

4. CONCLUSIONS

Recent progress in understanding the diffusive transport of ultrasonic
waves has given new insights into the propagation of classical waves in
strongly scattering media, and has shown how the energy velocity of
diffusing acoustic waves may be understood in simple physical terms.  This
progress has enabled a new ultrasonic technique, called Diffusing Acoustic
Wave Spectroscopy, to be developed.  This technique avoids the limitations
of traditional imaging experiments in strongly scattering materials and
allows new information of the dynamics of the scattering particles to be
obtained.  We have shown that DAWS is ideally suited to investigating the
dynamics fluidised suspensions with extremely high sensitivity.  Our results
show that there is considerable potential for gaining new information about
the dynamics of structured media through the development of spectroscopic
techniques such as DAWS, demonstrating that understanding the diffusive
propagation of ultrasound is relevant for applications as well as fundamental
studies in wave transport.
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